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Abstract
The appearances of complex eigenvalues in the spectra of PT -symmetric
quantum mechanical systems are usually associated with a spontaneous
breaking of PT . In this Letter we discuss a family of models for which this
phenomenon is also linked with an explicit breaking of supersymmetry. Exact
level-crossings are located, and connections with N -fold supersymmetry and
quasi-exact solvability in certain special cases are pointed out.

PACS numbers: 0365, 0230, 0270H, 0520, 0545, 1130P

(Some figures in this article are in colour only in the electronic version)

1. In a recent paper [1], we discussed the spectra of the following family of PT -symmetric
eigenvalue problems:[
− d2

dx2
− (ix)2M − α(ix)M−1 +

l(l + 1)

x2

]
ψ(x) = λψ(x) ψ(x) ∈ L2(C). (1)

The wavefunction ψ(x) is required to be square integrable on the contour C. For M < 2 this
can be the real axis, while for M � 2, it should be distorted down into the complex x-plane,
as in [2] for the special case α = l(l + 1) = 0.

The principal interest in PT -symmetric problems lies in the fact that, despite not being in
any obvious sense Hermitian, they often appear to have spectra which are entirely real [2–12].
In appendix B of [1], a proof of this property was given for the class of Hamiltonians (1),
drawing on ideas from the so-called ‘ODE/IM correspondence’ [13–17] (see also [18]). More
precisely, it was shown that, for M , α and l real and M > 1, the spectrum of (1) is

• real if α < M + 1 + |2l + 1| (2)

• positive if α < M + 1 − |2l + 1|. (3)

Referring to figure 1, reality was proved for (α, l) ∈ B ∪C ∪D, and positivity for (α, l) ∈ D.
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Figure 1. The initial ‘phase diagram’ at fixed M . Figure 2. The quantization contour i C (arrowed line).

Special cases of this result were the subject of a number of previous conjectures: for
α = l = 0, M = 3/2 in [3]; for α = l = 0 in [2] and for α = 0, l small in [15]. More
unexpected was the possible loss of reality in the region A. The condition (2) arose for
technical reasons in the proof in [1], though it was verified that at some (but not all) points
inside A, reality did indeed break down. But the reason for this breakdown, and the physical
significance—if any—of the boundaries of the region A, were left obscure.

In this Letter we show that the appearances of complex eigenvalues as the lines α =
M +1+ |2l+1| are crossed are directly related to the fact that on these lines the problem (1) can
be reformulated in terms of a PT -symmetric version of supersymmetric quantum mechanics,
and exhibits level-crossing. Elsewhere in the phase diagram, supersymmetry is explicitly
broken and the level-crossing is lifted. Moving into the region A, this lifting occurs through
the creation of a pair of complex-conjugate energy levels. Since the presence of complex
energy levels indicates the spontaneous breaking of PT symmetry [2], we see that the model
shows an interesting interplay between the two different ways in which a symmetry can be
broken.

2. To streamline some formulae, we replace x by x/i in (1) by setting �(x) = ψ(x/i), so
that the eigenproblem becomes
[
− d2

dx2
+ x2M + αxM−1 +

l(l + 1)

x2

]
�(x) = −λ�(x) �(x) ∈ L2(i C). (4)

We now specify the quantization contour more precisely: i C starts and ends at |x| = ∞,
joining the (Stokes) sectors S−1 and S1, where

Sk =
{
x :

∣∣∣∣ arg(x)− 2πk

2M + 2

∣∣∣∣ < π

2M + 2

}
. (5)

This is illustrated in figure 2.
It will also be convenient to adopt a new set of coordinates on the (α, l) plane, by setting

α± = 1

2M + 2
[α −M − 1 ± (2l + 1)] (6)

so that

α = (M + 1)(1 + α+ + α−), 2l + 1 = (M + 1)(α+ − α−). (7)
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The domain boundaries—the dotted lines in figure 1—are the lines α± = 0. On the line
α+ = 0, α = M − 2l and the problem (4) factorizes as

Q+Q−�(x) = −λ�(x) with Q± =
[
± d

dx
+ xM − l

x

]
. (8)

Such a factorization is usually taken to signal a relationship with supersymmetry [19, 20].
Indeed, it is immediately seen that (8) has a λ = 0 eigenfunction in L2(iC):

�(x) = x−l exp

(
1

M + 1
xM+1

)
Q−�(x) = 0 (9)

which can be interpreted as having unbroken supersymmetry. All other eigenfunctions
are paired with those of the SUSY partner Hamiltonian Ĥ = Q−Q+. This is found by
replacing (α, l) = (M − 2l, l) by (α̂, l̂) = (−M − 2l, l − 1), or (α+, α−) = (0,− 2l+1

M+1 )

by (α̂+, α̂−) = (−1,−1 − 2l−1
M+1 ) = (−1, α− − M−1

M+1 ). (A rather different point of view on
supersymmetry in PT -symmetric quantum mechanics was taken in [7], where the action of
the supersymmetry generators Q± was supplemented by T , resulting in a set-up with two
states of zero energy, rather than one.) Replacing −l by l + 1 gives a λ = 0 eigenfunction on
the line α− = 0. Thus the boundaries between the regions in figure 1 are picked out by the
presence of a (supersymmetric) zero-energy state in the spectrum of the model. One would
normally expect this to be the ground state, and indeed this is the case on the boundary of D.
However, level-crossing means that �(x) is only the ground state on the boundary of A for
α < M + 3. There is no contradiction with the usual theorems of supersymmetric quantum
mechanics, since the problem under discussion is not Hermitian.

To verify that level-crossing does occur, we consider T (0), where T (−λ) is a spectral
determinant which vanishes if and only if (4) has a solution, square integrable on i C, at that
value of λ. In [1], an expression for T (0) was found. In the ‘light-cone’ coordinates α±, this
is

T (−λ, α+, α−)|λ=0 =
(
M + 1

2

)1+α++α− 2π

� (−α+) � (−α−)
. (10)

As expected from supersymmetry, T |λ=0 is identically zero when either α+ or α− vanishes,
on account of the presence of the state � in the spectrum. Level-crossing will occur when
a further level passes through zero, but the presence of � makes this hard to detect from an
examination of T (−λ, α+, α−)|λ=0 alone. It is tempting to suppose that the level-crossings
happen at the double zeros of T |λ=0; tempting, but wrong, for reasons which may become
clearer when figures 3 and 4 below are examined. Better is to consider the SUSY partner
potential to (8), which is isospectral to it save for the elimination of the state �. Substituting
the values of α̂+ and α̂− into (10),

T (−λ, α̂+ = −1, α̂−)|λ=0 =
(
M + 1

2

)α̂− 2π

�(−α̂−)
=

(
M + 1

2

)α̂− 2π

�
(
M−1
M+1 − α−

) . (11)

Level-crossings with the state � are indicated by simple zeros of (11), and are at

(α+, α−) =
(

0, n +
M − 1

M + 1

)
n = 0, 1, . . . . (12)

(Had we looked instead for double zeros of (10), we would have predicted—incorrectly—
the values α− = n.) Swapping α+ and α− throughout gives the level-crossings on the
line α− = 0. Note that these level-crossings are exact—the state � is protected by
supersymmetry, and cannot mix with any other state, even as the level-crossing value of
l is approached. However, as soon as the supersymmetric line is left, the protection is
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Figure 3. The appearance of complex eigenvalues as the supersymmetric line α+ = 0 is crossed,
for M = 3. The eigenvalues are plotted against α−, with the points α− ∈ Z

+, E = 0 indicated by
boxes; for α+ = 0, these are double zeros of T (−λ, α+, α−).

lost and mixing does occur. This is the key point, showing why the boundaries of the
region A are of more than just technical significance. Since the model is PT -symmetric,
all energies are either real or occur in complex-conjugate pairs [2], and a real energy can
only become complex if it first pairs off with another real energy. What we have just
shown is that the hidden supersymmetry of the theory on the lines α+ = 0 and α− = 0
affords a mechanism for this pairing-off to occur, by permitting eigenvalues to become exactly
degenerate.
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Figure 4. Yet more complex eigenvalues for M = 3, this time near the line α+ = 1. Labelling as
in figure 3.

3. To verify this picture, we report some numerical data for M = 3. This value is chosen
principally for convenience, since at M = 3 the fifth spectral equivalence discussed in [1]
allows the ‘lateral’ eigenvalue problem (4), defined on the contour i C, to be mapped onto a
radial problem defined on the positive real axis. (Note that this mapping does not rule out
the appearance of complex eigenvalues of (4), since at such points the corresponding radial
problem has ‘irregular’ boundary conditions at the origin and is not self-adjoint.) The merit
of the radial problem is that it is straightforward to treat numerically, using (for example) the



L396 Letter to the Editor

MAPLE code in appendix A of [1].
In figure 3 we show the real energy levels along the supersymmetric line α+ = 0, and

along two lines just either side of it. In the third of these plots—the only one partially inside
the region A—pairs of eigenvalues join and become complex in the neighbourhoods of the
level-crossing points. By contrast, in the first plot, which lies entirely inside regions covered by
the proof of [1], the spectrum remains entirely real and the effect of supersymmetry-breaking
is seen in the replacement of level-crossing by level-repulsion.

It might seem surprising that we are observing level-crossing in such a simple quantum-
mechanical system. Again, the non-Hermiticity of the problem provides the explanation.
As the level-crossing point is approached, not only the two eigenvalues but also their
eigenfunctions become equal. (This is clear since eigenfunctions of (4) are uniquely
characterized by the values of α± and E, and their decay in the sector S−1.) The Hamiltonian
thus ceases to be completely diagonalizable, a situation which can be understood by considering
the following 2 × 2 matrix, with eigenvalues ±√

δ:

Hδ =
(

0 1 + δ
δ 0

)
Hδ

(
1

±√
δ

)
= ±

√
δ

(
1

±√
δ

)
. (13)

The value of δ corresponds to the distance from the level-crossing in the supersymmetry-
breaking direction. (The addition of diag(−η, 0) to Hδ=0 would instead model a perturbation
which preserves supersymmetry, leaving the theory on the line α+ = 0.) At δ = η = 0 the
two eigenvectors coincide. For this reason, the reference at the end of the last section to a
degeneracy in the model at the level-crossing should be treated with caution—better maybe to
say that the eigenproblem itself has become singular. The two eigenvalues become complex
for δ negative, so the transition to complex eigenvalues can be traced to the singular nature of
the eigenproblem at the level-crossing.

(To avoid confusion, we should stress that we are talking only of the ‘bosonic’ part of a
fully supersymmetric problem here—the full SUSY QM system involves both H(α+, α−) and
H(α̂+, α̂−), and the singularity of the eigenproblem at the level-crossing is reflected in the fact
that the λ = 0 degeneracy jumps from 1 to 2 there, rather than from 1 to 3 as would naively
have been expected.)

The lines α± = 0 are not the only ones along which there is a ‘protected’ zero-energy
level in the spectrum of the system—from the formula (10), the same is true of all the lines
α± = n, n ∈ Z

+. At least for M = 3, we can understand this as being due to a hidden N -fold
supersymmetry in the model [1, 21]. In figure 4 we illustrate how further complex levels are
created as these lines are crossed.

Three of the low-lying levels in figure 4(b), two of which become complex for α− > 1/4,
can in fact be found exactly: they are the roots of

P3(E) = E3 − 32[(5 − 3J )α− + J − 2]E = 0 (14)

at J = 3. More generally for M = 3, at α+ = (J − 1)/2, J = 1, 2, . . . , J levels of the
PT -symmetric problem (4) can be found exactly. This can be seen using the above-mentioned
fifth spectral equivalence of [1]: on the lines α+ = (J − 1)/2, (4) is mapped to the radial
problem at a point where it is quasi-exactly solvable [22]1. (Equivalently, it follows directly
from the termination of the relevant Bender–Dunne [24] expansion.) For J odd, one of these
QES levels is the exactly-zero level mentioned in the previous paragraph. This level (together
with the other J−1 QES levels) can be eliminated by passing from (α+, α−) = ((J−1)/2, α−)
to (α̂+, α̂−) = (−(J + 1)/2, α− − J/2) [1], and the exact locations of the level-crossings can

1 We remark that a relationship between generalized supersymmetry and quasi-exact solvability, albeit for a different
set of models, was originally discussed in [23].
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Figure 5. The reorganization of the levels passing from α+ = 0 to 1. Labelling as in figure 3.

again be found: they are at α− = J/2 + n, n = 0, 1, . . . . However, for the moment we do not
know whether a similar exact treatment can be given for other values of M , though we expect
the qualitative features of the breaking of level-crossings to persist, at least for nearby values
of M . (Recall that the ‘protection’ of the zero-energy state for α± ∈ Z

+ holds for all M .)
To end this section, figure 5 shows three further plots which should help the reader to

understand how the levels reorganize passing between figures 3 and 4. Figure 5(b) is another
QES example. This illustrates an additional feature of the models on the QES lines M = 3,
α± = (J − 1)/2: the levels which become complex along these lines always lie in the
QES part of the spectrum. To prove this, we simply note that the ‘dual’ problems, with
(α±, α∓) = (α̂±, α̂∓) = (−(J + 1)/2, α− − J/2), always lie in regions of the parameter
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Figure 6. The domain of unreality forM = 3. Horizontal and vertical axes are l and α respectively,
as in figure 1.

space covered by the reality proof of [1]. As already mentioned, the spectrum of this dual
problem is identical to that of the original problem, minus the QES levels. (Strictly speaking,
the arguments of [1] applied to a radial problem, but the discussion of section 8 of that paper,
based on intertwining operators, can be modified to cover the current, lateral, problem. One
can alternatively argue via the ‘fifth spectral equivalence’ mentioned at the start of this section.)
This demonstrates that the non-QES levels always remain real. A similar result was conjectured
for quartic QES potentials in [25], but so far as we know remains unproven.

4. The above discussion has confirmed that the domains where the spectrum of (4) has a
complex component open out from the level-crossing points on the boundary of the region
A. These points are given exactly, for general M , by equation (12). It is interesting to see,
at a qualitative level, how these ‘domains of unreality’ coalesce as one moves further into A.
Figure 6 exhibits some initial numerical results, found again for M = 3 using the MAPLE code
of [1]. This should be viewed as a refinement of the initial ‘phase diagram’ of figure 1. The full
domain of unreality is the interior of the curved line, a proper subset of A which only touches
its boundary at the points (α±, α∓) = (0, n + 1/2), which are the level-crossing points (12)
forM = 3. In the small, approximately triangular region insideA but outside the curve which
abuts the point α+ = α− = 0, the spectrum is not only real but also entirely positive, despite the
fact that it lies outside the domainD. This shows that, while the condition α < M +1−|2l+1|
is sufficient for positivity of the spectrum, it is not necessary.

Perhaps the most striking feature of figure 6 is the pattern of cusps. In the absence of an
analytical analysis, we do not yet know whether these are special to M = 3, or more generic.
At least numerically, they lie exactly on the lines α± = n, along which the model possesses
a protected zero-energy state (to guide the eye, segments of these lines have also been added
in figure 6). Furthermore, for M = 3 the model is quasi-exactly solvable on these lines. As
shown above, the levels which go complex then lie in the QES part of the spectrum, and this
allows the cusps to be located exactly for M = 3, assuming they do indeed lie on the QES
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lines. For example, this places the two lowest pairs of cusps at (α, l) = (9,−1/2±3/2) and
(15 − 3/

√
2,−1/2±3/

√
2).

A detailed study of these properties must await future work; we expect that complex WKB
techniques will be useful in this regard. These were recently employed in [9] for a problem
which can be mapped onto the l = 0, M = 2 case of (4), save for a different choice of Stokes
sectors—S−1 and S2—for the quantization contour.

The intersections of the lines α+ = (J1 − 1)/2 and α− = (J2 − 1)/2 provoke one further
thought, for M = 3. At these points the model is quasi-exactly solvable from two different
points of view, with either J1 or J2 levels lying in the QES part of the spectrum. This is reflected
in a curious factorization property of the Bender–Dunne [24] polynomials PJ (α±, E). (These
polynomials encode the QES levels in their zeros, equation (14) being one example.) Taking
J1 < J2, at the point (α+, α−) = ((J1 − 1)/2, (J2 − 1)/2) where the two QES lines intersect,
PJ1(α−, E) is a factor of PJ2(α+, E). A direct proof of this result, using the Bender–Dunne
three-term recursion relation [24], can also be given.

5. We conclude with some general comments. Our main purpose in this note has been to
understand the physical reasons for the breakdown in the reality proof of [1]. We have shown
that, on the lines along which the proof fails, the model has a hidden supersymmetry, and that
once these lines are crossed, the reality property can, and at some points does, fail to hold.
This implies that the conditions required by the proof are of more than technical significance.
It would be interesting to extend the proof to cover the full domain for which the spectrum
of (1) is real, but the complicated shape of the domain of unreality shown in figure 6 suggests
that this will be a difficult task.

The model we have been discussing has turned out to have an unexpectedly rich structure,
and should serve as a testing-ground for other aspects of PT -symmetric quantum mechanics.
More detailed studies should help us to gain a better understanding of the emergence of
complex eigenvalues in general, as well as shedding light on the pattern of transitions revealed
by figure 6. We should also remember that, via the ODE/IM correspondence [13–17], all of
these results have potential implications in the field of integrable models in 1 + 1 dimensions.

Finally, we remark that similar appearances of complex levels preceded by level-crossings
have been observed in a nonunitary model of quantum field theory—the boundary scaling Lee–
Yang model [26]. In this case the level-crossings were protected by an identity between cylinder
partition functions in models with differing boundary conditions, which followed from a set
of functional equations called a T -system. It remains to be seen whether this phenomenon can
also be understood on the basis of some hidden symmetry, as was the case for the level-crossings
discussed in a simpler, quantum mechanical context in this Letter.

We would like to thank Gérard Watts for a useful discussion. PED thanks the EPSRC for an
Advanced Fellowship, and RT thanks the EPSRC for a VF grant, number GR/N27330.
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